Last iteration?

Prepared by Jianming and Andrey Re-iterated with Frank P., ...

Problem formulation

Experiments need: <u>values</u>, <u>uncertainties</u>, <u>correlations</u> for σ_{tot} , σ_0 , σ_1 , σ_2

We now discuss only theoretical uncertainties:

- these are typically evaluated by varying QCD scales
- other uncertainties are very important too and must be kept in mind,
 but we do not attempt to evaluate them here

Logic flow (1): theory

Theory: σ_{tot} , $\sigma_{\geq 1}$, $\sigma_{\geq 2}$ have uncorrelated uncertainties This defines the number of independent nuisance parameters (3)

Total CS and its uncertainty come from YR: σ_{YR} and ϵ_{YR} This takes care of one of the three nuisance parameters; two – TBD

Logic flow (2): experiment

Where do we take σ_0 , σ_1 , σ_2 from?

These are defined as $\sigma_{YR} \times f_0$, $\sigma_{YR} \times f_1$, $\sigma_{YR} \times f_2$, where

- f_0 , f_1 , and f_2 are evaluated by experiments using the full detector simulation (event generator Higgs p_T usually reweighted to match NNLO calculations)
- $f_0 + f_1 + f_2 = 1$
- i.e. there is only independent variable here; next we use f_0 and f_1

Logic flow (3): theory + experiment

Where do we get errors on f_0 and f_2 from?

```
1) Run HNNLO to get \sigma_{tot}, \sigma_{\geq 1}, \sigma_{\geq 2} with their errors \epsilon_{tot}, \epsilon_{\geq 1}, \epsilon_{\geq 2}
```

2) get ratios:
$$\rho_0 = (\sigma_{tot} - \sigma_{\geq 1}) / \sigma_{tot}$$
$$\rho_1 = (\sigma_{\geq 1} - \sigma_{\geq 12}) / \sigma_{tot}$$
$$\rho_2 = \sigma_{\geq 2} / \sigma_{tot}$$

3) Their errors are
$$\delta \rho_0 / \rho_0 = (1-\rho_0)/\rho_0 \operatorname{sqrt}((\epsilon_{\geq 1})^2 + (\epsilon_{\operatorname{tot}})^2)$$

 $\delta \rho_1 / \rho_1 = ...$
 $\delta \rho_2 / \rho_2 = \operatorname{sqrt}((\epsilon_{\geq 2})^2 + (\epsilon_{\operatorname{tot}})^2)$

4) Use these together with the total CS uncertainty ε_{VR} to define uncertainties for 0-, 1-, 2-jet bins

BUT: $\delta\sigma_{YR}/\sigma_{YR}$, $\delta\rho_0/\rho_0$, $\delta\rho_0/\rho_0$, $\delta\rho_0/\rho_0$ are correlated and in principle there are also only three independent nuisance parameters

May 10, 2011 5

Logic flow (4): theory

What is the correlation matrix?

1) Use HNNLO to get correlation matrix for σ_{tot} , ρ_0 , ρ_1 , ρ_2

```
\begin{array}{lll} C(\sigma_{tot}, \, \rho_0) & = & 1 \, / \, \text{sqrt} ( \, 1 + (\epsilon_{\geq 1} / \epsilon_{tot})^{\, 2} \, \, ) \\ C(\sigma_{tot}, \, \rho_1) & = & \dots \\ C(\sigma_{tot}, \, \rho_2) & = & - \, 1 \, / \, \, \text{sqrt} ( \, 1 + (\epsilon_{\geq 2} / \epsilon_{tot})^{\, 2} \, \, ) \\ C(\rho_0, \, \rho_2) & = & C(\sigma_{tot}, \, \rho_0) \times C(\sigma_{tot}, \, \rho_2) \\ C(\rho_1, \, \rho_2) & = & \dots \end{array}
```

NOTE: only ratios of relative errors of HNNLO CS's are needed

May 10, 2011 6

Logic flow (5): simplifying

- The gg-contribution to the 2-jet analysis is strongly suppressed, nearly negligible
- 2) Numerically, the 2-jet gg uncertainties correlate very weakly with the total CS, 0-jet and 1-jet fractions.

If one wants to continue to keep track of the gg-contribution in the 2-jet analysis, it can be treated as uncorrelated with 0- and 1-jet bins

This will add fourth independent uncorrelated nuisance parameter---easy

Questions

- Are relative errors ε_{tot} , $\varepsilon_{\geq 1}$, $\varepsilon_{\geq 2}$ (HNNLO) approximately m_H independent?
 - This would simplify tracking errors on ρ's
- Are ratios of relative errors $(\epsilon_{\geq 1}/\epsilon_{tot})$ and $(\epsilon_{\geq 2}/\epsilon_{tot})$ (HNNLO) approximately m_H independent?
 - This would simplify tracking correlation matrix

If we are lucky, maybe, we can get away with a one-size-fits-all approach (with some simplifications)

Backup

ggF Jet Bin Correlation

Basic parton level selection using HNNLO

Two leptons with pT>20 GeV and $|\eta|$ <2.5;

MissingEt > 30 GeV (pT of the two neutrino system);

Event veto if jets with pT>30 GeV and $|\eta|$ <3.0

	$(\mu_F/m_H, \ \mu_R/m_H)$								
	(0.5, 0.5)	(0.5, 1.0)	(0.5, 2.0)	(1.0, 0.5)	(1.0, 1.0)	(1.0, 2.0)	(2.0, 0.5)	(2.0, 1.0)	(2.0, 2.0)
Cross sections in 0, 1 and 2-jet bin									
σ_0	30.1	28.5	26.6	30.1	28.6	26.8	30.3	28.6	27.0
σ_1	11.5	10.2	8.86	11.6	10.2	8.77	11.7	10.1	8.60
σ_2	3.95	2.64	1.84	3.57	2.39	1.66	3.24	2.17	1.51
Fractions in 0, 1 and 2-jet bin									
f_0	66.1	68.9	71.4	66.5	69.5	72.0	67.0	70.0	72.8
f_1	25.2	24.7	23.7	25.6	24.7	23.6	25.9	24.7	23.2
f_2	8.69	6.40	4.92	7.88	5.80	4.45	7.17	5.31	4.06

f_i correlation matrix

$$\begin{pmatrix} 1.00 & -0.95 & -0.98 \\ -0.95 & 1.00 & 0.88 \\ -0.98 & 0.88 & 1.00 \end{pmatrix}$$

- f_0 anti-correlated with f_1 and f_2 ;
- f_1 and f_2 are largely correlated